Random inscribing polytopes
نویسندگان
چکیده
For convex bodies K with C2 boundary in Rd, we explore random polytopes with vertices chosen along the boundary of K. In particular, we determine asymptotic properties of the volume of these random polytopes. We provide results concerning the variance and higher moments of this functional, as well as an analogous central limit theorem.
منابع مشابه
An Inscribing Model for Random Polytopes
For convex bodies K with C2 boundary in Rd, we explore random polytopes with vertices chosen along the boundary of K. In particular, we determine asymptotic properties of the volume of these random polytopes. We provide results concerning the variance and higher moments of this functional, as well as an analogous central limit theorem.
متن کاملInscribing a regular octahedron into polytopes
We prove that any simple polytope (and some non-simple polytopes) in R admits an inscribed regular octahedron.
متن کاملBanach-Mazur Distances and Projections on Random Subgaussian Polytopes
We consider polytopes in Rn that are generated by N vectors in Rn whose coordinates are independent subgaussian random variables. (A particular case of such polytopes are symmetric random ±1 polytopes generated by N independent vertices of the unit cube.) We show that for a random pair of such polytopes the Banach-Mazur distance between them is essentially of a maximal order n. This result is a...
متن کاملGeometry of random (-1/+1)-polytopes A survey of recent results on random {−1, 1}-polytopes in Asymptotic Convex Analysis
Random {−1, 1}-polytopes demonstrate extremal behavior with respect to many geometric characteristics.
متن کاملStability Properties of Neighbourly Random Polytopes
We introduce a quantitative parameter measuring m-neighbourliness of symmetric convex polytopes in R . We discuss this parameter for random polytopes generated by subgaussian vectors and show its stability properties.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Eur. J. Comb.
دوره 28 شماره
صفحات -
تاریخ انتشار 2007